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1. It is the purpose of this paper to exhibit some properties of certain rings of 

analytic functions which may be a little unexpected. 

Let E be the ring of all entire functions in one complex variable, i.e. the subring 

of C[[X]] consisting of all formal power series with infinite convergence radius. 

More generally, for a subfield K of C let E(K) be the subring of K[[X]] formed by 

all power series with infinite convergence radius. If Q is a positive real number, let 

E(Q, K) , resp. J?(Q, K) be the subring of K[[X]] consisting of all power series with 

convergence radius >Q, resp. 2~. 

It is well known that E(K) is a non-Noetherian domain and that E(K) is a Bezout 

domain, i.e. any finitely generated ideal is principal. If K=C this was proved by 

Wedderburn [ 131 and in the general case by Helmer [4], (who apparently was 

unaware of [13]). As for the Krull dimension of E the first ‘result’ appeared in [lo] 

stating that K-dim E = 1. An error in the proof was noticed by Kaplansky [5] and 

K-dim E is actually infinite. We shall give more precise results concerning the length 

of chains of prime ideals of E. 

As shown in [7] the global dimension of E is 23, while the exact value of gl.dimE 

cannot be determined from the usual axioms of set theory (ZFC): For any t, 

3 5 tr m, the statement gl.dim E = t is consistent with ZFC, in fact, even consistent 

with ZFC + MA, (MA denoting Martin’s axiom). 

The corresponding results hold true if E is replaced by E(K) or &, K). The pro- 

ofs only require minor modifications. For E(Q, K), however, the situation is com- 

pletely different. For any positive Q and any field KS C the ring E(Q, K) is Eucli- 

dean, in particular a PID. Since for instance E(1, C) = n;=, E(l - l/n, 4X) we ob- 

tain a decreasing sequence of PID’s whose intersection is a Bezout domain of 

undecidable global dimension and of uncountable Krull dimension. 

The stable range (in the sense of Bass [l]) of the above rings depends on K. If 

KS R the stable range of each of the rings E(Q, K), E(Q, K) and E(K) is 2, otherwise, 

when Kg R the stable range is 1. 
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Finally, we consider the rings E, of entire functions of order <r, where 

0 <r< 03, cf. [ 111. We recall that a function f E E belongs to E, if there exist real 

numbers c and a, a < r, such that If(x)1 I c exp(lx 1”) for all x E C. From an analytic 

point of view the functions of finite order are, after the polynomials, the simplest 

entire functions [l 11. However, the ring-theoretic structure of E, is much more 

complicated than that of E. Just as E the rings E, are non-Noetherian, but unlike 

E none of the rings E,. is a Bezout domain. The stable range of E, is > 1, but the 

precise value is unknown. 

From hadamard’s factorization theorem [l l] it follows that each E, is completely 

integrally closed in its quotient field. Concerning the global dimension of E, we are 

only able to show that gl.dimE,L3 and that the statement gl.dimE,= 03 is consis- 

tent with ZFC + MA. The Krull dimension of E, is uncountable and behaves to a 

large extent like that of E. 

The above methods also allow us to determine the Krull dimension of the ring of 

all infinitely often differentiable real functions and a class of subrings hereof. 

2. In this section we prove those results mentioned in Section 1 which do not invoke 

logic or set theory. 

Theorem 2.1. For any subfield K of C any Q>O the ring R =E(Q, K) is Euclidean; 

in particular, R is a PID. 

Proof. For f E R \ 0 let N(f) be the number of zeros (counted with multiplicities) 

in the closed disc 1~ 1 I p. Obviously N(fg) =N(f) + N(g) for all f, g E R \ 0 and 

N(f) = 0 if and only if f is a unit in R. We shall show that for any two elements 

f, g E R, g # 0 there exist elements q and r E R such that 

f=gq+r where r=O or N(r)<N(g). 

Here, we may, of course, assume that glf. 

The functions f and g can be written in the form 

where 

f =F, g=m, 

(l)j(resp. g) is a polynomial in C[X] whose roots are exactly the zeros off(resp. 

g) in the disc Iz 1 se, counted with multiplicities, andJ(resp. g) has real coefficients 

when KS IR. 

(2) u (resp. v) is a unit in E(Q, C) and u (resp. v) belongs to E(Q, R) when KZ IR. 

By the usual algorithm for polynomials there exist elements 4 and PE C[X] such 

that f=gq+ i; and P has degree smaller than N(g) = degree of g. If KS IR the 

polynomials Q and P have real coefficients. Hence 

f=g(vU’ug)+ur 



Some curiosities of rings of analytic functions 279 

where the number of zeros of u F is smaller than N(g). Here u P and up ’ ug may not 

have coefficients in K, but if KE IR they belong to R. 

If g=b,x”+b,+,x”+‘+... , b,#O, then UP= EL0 a,~’ where a,, a,, . . . . a,_, EK. 

For any h EE(Q, C), resp. h EE(Q, R) when KE R, we can write 

f=g(V’uq-h)+(hg+uQ. 

Since K is dense in R when KS IR and K is dense in C when Kg If?, we can define 

successively the coefficients in 

h=h()+hix+h,X*+... 

such that 

hg+uF=(h,+h,x+h2x2+...)(b,x”+b,+,x”+’+...)+ i a,x’ 
i=o 

have coefficients in K, the convergence radius of h is >Q, and (by continuity 

arguments) hg + u P has at most N(F) = N(u 7) zeros in the disc Iz 1~ Q. Hence 

f=gq+r, 

q=o-‘uq-h, 

r=hg+ur;, 

yields the desired decomposition off. 

Theorem 2.2. Let K be a subfield of C and Q a positive number. If KS F each of 
the rings E(K), I?(@, K) and E(Q, K) has stable range 2. If Kg F3 each of the above 
rings has stable range 1. 

Proof. The proof of Proposition 1.1 of [8], (cf. the addendum of that paper) also 

works for the rings E(Q, K) and E(Q, K), Kg I?, so that the rings E(K), ,!?(Q, K) and 

E(Q, K) have stable range 1 when Kg [R. (For E(C) cf. also [9].) 

Next we consider the case where KS IR. Let R denote one of the rings E(K), 
,J?(Q, K) or E(Q, K). For f E R let Z(f) be the set of zeros a off where we require 

Iall@ if R=E (Q, K) and 1~1 <Q if R =l?(e, K). 
We first prove that the stable range of R is 5 2. For any three functions f, g and 

h E R such that Rf f Rg+ Rh =R we have to find elements A,p ER for which 

R(f+Ah)+R(g+ph)=R, cf. [12]. The condition Rf+ Rg+ Rh=R implies 

Z(f) fl Z(g) n Z(h) =0. By interpolation we can find A E R such that 

/I (Q) # -f(ct)/h(a) for all (;I E Z(g), (r @Z(h). Hence Z( f + Ah) fl Z(g) = 0 and thus 

R(f+Ah)+Rg=R. 
To show that the stable range of R is # 1 we consider the functions f =x and 

g = 4x’ - e2, where Q may be any positive number in the case R = E(K). Obviously, 

Rf + Rg = R while R(f + Ig) #R for every A E R, since f + A g is a real-valued con- 

tinuous function and (f + Ag)(e/2) > 0 and (f + A g)( - e/2) < 0. 
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Remark 1. That the stable range of E(Q, K) is 5 2 could also be seen from Theorem 

2.1 since any PID has stable range 12. 

Remark 2. From Theorems 2.1 and 2.2 it follows that any matrix in SL(n, E(Q, K)) 

is a product of elementary matrices. If Kg I?, any matrix in SL(n, E(Q, K)) is a pro- 

duct of at most 2n(n - 1) elementary matrices. (The bound is probably not best 

possible.) The corresponding result is not true if KS IR. For instance, for n = 2 there 

is no number f such that any matrix in SL(2, E(Q, K)) is a product of at most f 
elementary matrices. In fact, no such bound exists for the matrices 

cos(tx) - sin(tx) 

sin(tx) cos(tx) > 
, telN. 

3. In this section we deal with the remaining assertions in Section 1. For the proofs 

we need some general results about ultrapowers of z over a countable index set I. 

Let y be a non-principal ultrafilter on Z and z= z*/.Y the corresponding 

ultrapower of z.2 has a natural structure as a totally ordered group. Let %’ be the 

family of convex subgroups (‘isolated subgroups’ in the terminology of [14]). By set- 

theoretical inclusion W is a totally ordered Dedekind complete set. Further, let .d be 

the family of ‘principal’ convex subgroups of 2. If a>O, the principal convex 

subgroup generated by a is 

(a>=(xEzJ -nacx<na for some n~iN}. 

!? is totally ordered by set-theoretical inclusion and forms as such an qr -set. This 

means that for any two countable families (<a>} and ((6)) of i3D such that any 

(a> 5 any( 6) there exists a Y for which 

(0) $ tu> 5: (b) (*) 

for all (a) and (b). 

We may assume that all a and b are positive and (*) can be written 

na<y 
my<b I for all a and b and all n, WE N. 

Since any finite subsystem of the above family of inequalities is solvable in 2 and 

2 is N r-saturated, the above countable system of inequalities has a solution y E 2. 

Consequently 9 is an qr-set. If we assume MA, there exists a non-principal 

ultrafilter .F on Z such that 2 = Z’/.7 is 2kQaturated [2]. The above construction 

shows that in this case 9 is an qa-set, where 2’0= N,, (a being an ordinal). 
By [3] it follows that V has at least 2 ‘1 elements. If we assume MA and 

2’0= K,, then 2’0 is regular [6], and the proof in [3, pp. 185-1881 shows that %’ 

has cardinality 2”‘. 

Moreover, if we have convex subgroups of 2 
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then there exist elements b and CE~ such that 

and the fact that -9 is an vi-set (resp. qa-set if we assume MA and choose 9 

suitably) implies that there are 22’1 (resp. 22x”) convex subgroups between a and 
c 
c. 

After these preliminary remarks we return to the results in Section 1. It presents 

no difficulties to modify the proof in [7] to obtain 

Theorem 3.1. Let K be a subfield of C and Q a positive number. Then the rings E(K) 
and E(Q, K) have global dimension 2 3. Moreover, for any t, 3st<oc, thestate- 
ment “gl.dim E(K) = t ” (resp. “gl.dim f$, K) = t “) is consistent with ZFC + MA. 

Remark. It is an open question whether the statement “gl.dimE(K) =3” resp. 

“gl.dimE@, K) = 3” is consistent with ZFC + CH, where CH denotes the 

negation of the continuum hypothesis. 

Theorem 3.2, Let R = E(K) or i?(e, K) as above. Then K-dim R 2 2”. Moreover, 
MA implies K-dim R = 22H”. If p 5 qs r are prime ideals of R, then there exists a 
chain of 2’h prime ideals between p and t. 

Proof. Let I be a countably infinite set of zeros of a function in R and let .% be a 

non-principal ultrafilter on i. Then m = {f E R 1 Z(f) fl IE Y} is a maximal ideal of 

R and the localization R, is a valuation ring with 2 as value group. The statements 

of the theorem are now just formal consequences of the results in the beginning of 

this section since there is a (l-l) correspondence between the prime ideals contained 

in m and the convex subgroups of 2, and any non-principal maximal ideal of R can 

be obtained as above. 

Remark. The exact value (cardinality) of the Krull dimension of the above rings is 

probably undecidable in ZFC. 

Theorem 3.3. Let R = E, be the ring of all entire functions of order cr. Then 
gl.dim E,> 3, and the statement “gl.dim R = 03” is consistent with ZFC + MA. 

Moreover, K-dim R L 2” and MA implies K-dim R = 22K”. 

Proof. Let Z= (2” ) n E N}. If a,, n E IN, is a sequence of natural numbers for which 

a,/n is bounded there exists a function f E R, for instance 

f = nvN (1 -x/2”)‘n, 

for which Z(f) =Z and a, is the multiplicity of 2” as a zero off. 
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For a non-principal ultrafilter .“l”on Z the functions g in R for which Z(g) n ZE 9 
form a prime ideal p of R. 

For h E R and n E kl let o,(h) be the multiplicity of 2” as a zero of h and B(h) the 
element of 2 determined by the sequence u,(h), n E t~4. Here o^ defines a valuation 
of the quotient field Q, of E,.= R with values in 2. Since any element in Q, - by vir- 
tue of Hadamard’s factorization theorem - can be written as a quotient of two func- 
tions in R with disjoint zero sets, it follows that the valuation ring Pcorresponding 
to 0 is the localization R,. 

For t E N let t* be the element in 2 defined by the constant sequence {t >. Just as 
in [7] the ideal in Pconsisting of all s E P such that O(s) > t * for all t E N is not coun- 
tably generated. Hence as in [7] we get 

gl.dimR?gl.dimR,=gl.dim Pr3. 

If we assume MA there exists an ultrafilter 9’ on Z such that z/.Q’ is 
&saturated [2]. The statement 2’O= X,, 1 is consistent with ZFC + MA (cf. [6]). 
Consequently, it follows as in [7] that the statement “gl.dim P’= 03” - and thus 
the statement “gldim R = 03” - is consistent with ZFC + MA, where p’ denotes the 
valuation ring constructed as above from the ultrafilter Y’. 

Let w be the element in 2 defined by the sequence {n} , II E N. The principal con- 
vex subgroup ( w) of 2 is in the value group of o^. Now the remaining assertions of 
Theorem 3.3 follow - just as in Theorem 3.2 - from the results in the beginning of 
this section. 

Finally, we consider infinitely often differentiable functions f from iR to k?. For 
a~!? we define u,(f)=n, nr0, if f(a)=... =f’“-“(a)=O, f’“‘(a)#O and 
u,(f)=co, if f(‘)(a)=0 for all i20. 

If ,Y is a non-principal ultrafilter on n\l we define G(f) as the element in 
Z”“/.FU {M) determined by the sequence {u,(f)), n E N. 

For any ring R, E(Q) 5 R 5 C” (II?), where C”(R) denotes the ring of all infinitely 
often differentiable functions from IR to [R we obtain by 0 a valuation (for rings with 
zero-divisors) of R with values in H”/.YU {w} and by arguments similar to the 
previous we get 

Theorem 3.4. Let R be any ring for which E(Q)ERSC” (I?). Then R contains a 

chain of prime ideals of length 2” 1. Moreover, MA implies that K-dim R = 22H” 

and there is a chain of prime ideals of length 22Ho. 
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