SOME CURIOSITIES OF RINGS OF ANALYTIC FUNCTIONS

C.U. JENSEN

Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

Communicated by C. Löfwall Received 8 March 1985

Dedicated to Jan-Erik Roos on his 50-th birthday

1. It is the purpose of this paper to exhibit some properties of certain rings of analytic functions which may be a little unexpected.

Let *E* be the ring of all entire functions in one complex variable, i.e. the subring of $\mathbb{C}[[X]]$ consisting of all formal power series with infinite convergence radius. More generally, for a subfield *K* of \mathbb{C} let E(K) be the subring of K[[X]] formed by all power series with infinite convergence radius. If ϱ is a positive real number, let $E(\varrho, K)$, resp. $\overline{E}(\varrho, K)$ be the subring of K[[X]] consisting of all power series with convergence radius $> \varrho$, resp. $\ge \varrho$.

It is well known that E(K) is a non-Noetherian domain and that E(K) is a Bezout domain, i.e. any finitely generated ideal is principal. If $K = \mathbb{C}$ this was proved by Wedderburn [13] and in the general case by Helmer [4], (who apparently was unaware of [13]). As for the Krull dimension of E the first 'result' appeared in [10] stating that K-dim E = 1. An error in the proof was noticed by Kaplansky [5] and K-dim E is actually infinite. We shall give more precise results concerning the length of chains of prime ideals of E.

As shown in [7] the global dimension of E is ≥ 3 , while the exact value of gl.dim E cannot be determined from the usual axioms of set theory (ZFC): For any t, $3 \leq t \leq \infty$, the statement gl.dim E = t is consistent with ZFC, in fact, even consistent with ZFC + MA, (MA denoting Martin's axiom).

The corresponding results hold true if E is replaced by E(K) or $\overline{E}(\varrho, K)$. The proofs only require minor modifications. For $E(\varrho, K)$, however, the situation is completely different. For any positive ϱ and any field $K \subseteq \mathbb{C}$ the ring $E(\varrho, K)$ is Euclidean, in particular a PID. Since for instance $\overline{E}(1, \mathbb{C}) = \bigcap_{n=1}^{\infty} E(1-1/n, \mathbb{C})$ we obtain a decreasing sequence of PID's whose intersection is a Bezout domain of undecidable global dimension and of uncountable Krull dimension.

The stable range (in the sense of Bass [1]) of the above rings depends on K. If $K \subseteq \mathbb{R}$ the stable range of each of the rings $E(\varrho, K)$, $\overline{E}(\varrho, K)$ and E(K) is 2, otherwise, when $K \not\subseteq \mathbb{R}$ the stable range is 1.

Finally, we consider the rings E_r of entire functions of order $\langle r \rangle$, where $0 \langle r \langle \infty \rangle$, cf. [11]. We recall that a function $f \in E$ belongs to E_r if there exist real numbers c and a, $a \langle r \rangle$, such that $|f(x)| \leq c \exp(|x|^a)$ for all $x \in \mathbb{C}$. From an analytic point of view the functions of finite order are, after the polynomials, the simplest entire functions [11]. However, the ring-theoretic structure of E_r is much more complicated than that of E. Just as E the rings E_r are non-Noetherian, but unlike E none of the rings E_r is a Bezout domain. The stable range of E_r is >1, but the precise value is unknown.

From hadamard's factorization theorem [11] it follows that each E_r is completely integrally closed in its quotient field. Concerning the global dimension of E_r we are only able to show that gl.dim $E_r \ge 3$ and that the statement gl.dim $E_r = \infty$ is consistent with ZFC + MA. The Krull dimension of E_r is uncountable and behaves to a large extent like that of E.

The above methods also allow us to determine the Krull dimension of the ring of all infinitely often differentiable real functions and a class of subrings hereof.

2. In this section we prove those results mentioned in Section 1 which do not invoke logic or set theory.

Theorem 2.1. For any subfield K of \mathbb{C} any $\varrho > 0$ the ring $R = E(\varrho, K)$ is Euclidean; in particular, R is a PID.

Proof. For $f \in R \setminus 0$ let N(f) be the number of zeros (counted with multiplicities) in the closed disc $|z| \le \varrho$. Obviously N(fg) = N(f) + N(g) for all $f, g \in R \setminus 0$ and N(f) = 0 if and only if f is a unit in R. We shall show that for any two elements $f, g \in R, g \ne 0$ there exist elements q and $r \in R$ such that

$$f = gq + r$$
 where $r = 0$ or $N(r) < N(g)$.

Here, we may, of course, assume that glf.

The functions f and g can be written in the form

$$f=\overline{f}u, \qquad g=\overline{g}v,$$

where

(1) \overline{f} (resp. \overline{g}) is a polynomial in $\mathbb{C}[X]$ whose roots are exactly the zeros of f (resp. g) in the disc $|z| \le \rho$, counted with multiplicities, and \overline{f} (resp. \overline{g}) has real coefficients when $K \subseteq \mathbb{R}$.

(2) u (resp. v) is a unit in $E(\varrho, \mathbb{C})$ and u (resp. v) belongs to $E(\varrho, \mathbb{R})$ when $K \subseteq \mathbb{R}$.

By the usual algorithm for polynomials there exist elements \bar{q} and $\bar{r} \in \mathbb{C}[X]$ such that $\bar{f} = \bar{g} \bar{q} + \bar{r}$ and \bar{r} has degree smaller than N(g) = degree of \bar{g} . If $K \subseteq \mathbb{R}$ the polynomials \bar{q} and \bar{r} have real coefficients. Hence

$$f = g(v^{-1} u \bar{q}) + u \bar{r}$$

where the number of zeros of $u\bar{r}$ is smaller than N(g). Here $u\bar{r}$ and $v^{-1}u\bar{q}$ may not have coefficients in K, but if $K \subseteq \mathbb{R}$ they belong to \mathbb{R} .

If $g = b_n x^n + b_{n+1} x^{n+1} + \dots, b_n \neq 0$, then $u \bar{r} = \sum_{i=0}^{\infty} a_i x^i$ where $a_0, a_1, \dots, a_{n-1} \in K$. For any $h \in E(\varrho, \mathbb{C})$, resp. $h \in E(\varrho, \mathbb{R})$ when $K \subseteq \mathbb{R}$, we can write

$$f = g(v^{-1}u\bar{q} - h) + (hg + u\bar{r}).$$

Since K is dense in \mathbb{R} when $K \subseteq \mathbb{R}$ and K is dense in \mathbb{C} when $K \not\subseteq \mathbb{R}$, we can define successively the coefficients in

$$h = h_0 + h_1 x + h_2 x^2 + \dots$$

such that

$$hg + u\bar{r} = (h_0 + h_1 x + h_2 x^2 + \dots)(b_n x^n + b_{n+1} x^{n+1} + \dots) + \sum_{i=0}^{\infty} a_i x^i$$

have coefficients in K, the convergence radius of h is > ϱ , and (by continuity arguments) $hg + u\bar{r}$ has at most $N(\bar{r}) = N(u\bar{r})$ zeros in the disc $|z| \le \varrho$. Hence

$$f = gq + r,$$

$$q = v^{-1}u \bar{q} - h,$$

$$r = hg + u \bar{r},$$

yields the desired decomposition of f.

Theorem 2.2. Let K be a subfield of \mathbb{C} and ϱ a positive number. If $K \subseteq \mathbb{R}$ each of the rings E(K), $\overline{E}(\varrho, K)$ and $E(\varrho, K)$ has stable range 2. If $K \subseteq \mathbb{R}$ each of the above rings has stable range 1.

Proof. The proof of Proposition 1.1 of [8], (cf. the addendum of that paper) also works for the rings $\overline{E}(\varrho, K)$ and $E(\varrho, K)$, $K \not\subseteq \mathbb{R}$, so that the rings E(K), $\overline{E}(\varrho, K)$ and $E(\varrho, K)$ have stable range 1 when $K \not\subseteq \mathbb{R}$. (For $E(\mathbb{C})$ cf. also [9].)

Next we consider the case where $K \subseteq \mathbb{R}$. Let *R* denote one of the rings E(K), $\tilde{E}(\varrho, K)$ or $E(\varrho, K)$. For $f \in R$ let Z(f) be the set of zeros α of *f* where we require $|\alpha| \leq \varrho$ if $R = E(\varrho, K)$ and $|\alpha| < \varrho$ if $R = \bar{E}(\varrho, K)$.

We first prove that the stable range of R is ≤ 2 . For any three functions f, g and $h \in R$ such that Rf + Rg + Rh = R we have to find elements $\lambda, \mu \in R$ for which $R(f + \lambda h) + R(g + \mu h) = R$, cf. [12]. The condition Rf + Rg + Rh = R implies $Z(f) \cap Z(g) \cap Z(h) = \emptyset$. By interpolation we can find $\lambda \in R$ such that $\lambda(\alpha) \neq -f(\alpha)/h(\alpha)$ for all $\alpha \in Z(g), \alpha \notin Z(h)$. Hence $Z(f + \lambda h) \cap Z(g) = \emptyset$ and thus $R(f + \lambda h) + Rg = R$.

To show that the stable range of R is $\neq 1$ we consider the functions f=x and $g=4x^2-\varrho^2$, where ϱ may be any positive number in the case R=E(K). Obviously, Rf+Rg=R while $R(f+\lambda g)\neq R$ for every $\lambda \in R$, since $f+\lambda g$ is a real-valued continuous function and $(f+\lambda g)(\varrho/2)>0$ and $(f+\lambda g)(-\varrho/2)<0$.

Remark 1. That the stable range of $E(\varrho, K)$ is ≤ 2 could also be seen from Theorem 2.1 since any PID has stable range ≤ 2 .

Remark 2. From Theorems 2.1 and 2.2 it follows that any matrix in $SL(n, E(\varrho, K))$ is a product of elementary matrices. If $K \not\subseteq \mathbb{R}$, any matrix in $SL(n, E(\varrho, K))$ is a product of at most 2n(n-1) elementary matrices. (The bound is probably not best possible.) The corresponding result is not true if $K \subseteq \mathbb{R}$. For instance, for n = 2 there is no number f such that any matrix in $SL(2, E(\varrho, K))$ is a product of at most f elementary matrices. In fact, no such bound exists for the matrices

$$\begin{pmatrix} \cos(tx) & -\sin(tx) \\ \sin(tx) & \cos(tx) \end{pmatrix}, \quad t \in \mathbb{N}.$$

3. In this section we deal with the remaining assertions in Section 1. For the proofs we need some general results about ultrapowers of \mathbb{Z} over a countable index set *I*. Let \mathscr{F} be a non-principal ultrafilter on *I* and $\mathbb{Z} = \mathbb{Z}^{I}/\mathscr{F}$ the corresponding ultrapower of $\mathbb{Z}.\mathbb{Z}$ has a natural structure as a totally ordered group. Let \mathscr{C} be the family of convex subgroups ('isolated subgroups' in the terminology of [14]). By settheoretical inclusion \mathscr{C} is a totally ordered Dedekind complete set. Further, let \mathscr{P} be the family of 'principal' convex subgroups of \mathbb{Z} . If a > 0, the principal convex subgroup generated by a is

$$\langle a \rangle = \{x \in \mathbb{Z} \mid -na < x < na \text{ for some } n \in \mathbb{N}\}.$$

 \mathscr{P} is totally ordered by set-theoretical inclusion and forms as such an η_1 -set. This means that for any two countable families $\{\langle a \rangle\}$ and $\{\langle b \rangle\}$ of \mathscr{P} such that any $\langle a \rangle \subsetneq any \langle b \rangle$ there exists a y for which

$$\langle a \rangle \subsetneq \langle y \rangle \subsetneq \langle b \rangle \tag{$*$}$$

for all $\langle a \rangle$ and $\langle b \rangle$.

We may assume that all a and b are positive and (*) can be written

$$\begin{array}{l}na < y\\my < b\end{array}$$
 for all *a* and *b* and all *n*, $m \in \mathbb{N}$.

Since any finite subsystem of the above family of inequalities is solvable in $\hat{\mathbb{Z}}$ and $\hat{\mathbb{Z}}$ is \aleph_1 -saturated, the above countable system of inequalities has a solution $y \in \hat{\mathbb{Z}}$. Consequently \mathscr{P} is an η_1 -set. If we assume MA, there exists a non-principal ultrafilter \mathscr{F} on I such that $\hat{\mathbb{Z}} = \mathbb{Z}^I / \mathscr{F}$ is 2^{\aleph_0} -saturated [2]. The above construction shows that in this case \mathscr{P} is an η_α -set, where $2^{\aleph_0} = \aleph_\alpha$, (α being an ordinal).

By [3] it follows that \mathscr{C} has at least 2^{κ_1} elements. If we assume MA and $2^{\kappa_0} = \kappa_{\alpha}$, then 2^{κ_0} is regular [6], and the proof in [3, pp. 185–188] shows that \mathscr{C} has cardinality $2^{2^{\kappa_0}}$.

Moreover, if we have convex subgroups of $\hat{\mathbb{Z}}$

then there exist elements b and $c \in \mathbb{Z}$ such that

$$\mathfrak{a} \subsetneq \langle b \rangle \subsetneq \mathfrak{b} \subsetneq \langle c \rangle \subsetneq \mathfrak{c}$$

and the fact that \mathscr{P} is an η_1 -set (resp. η_{α} -set if we assume MA and choose \mathscr{F} suitably) implies that there are $\geq 2^{\aleph_1}$ (resp. $2^{2^{\aleph_0}}$) convex subgroups between a and c.

After these preliminary remarks we return to the results in Section 1. It presents no difficulties to modify the proof in [7] to obtain

Theorem 3.1. Let K be a subfield of \mathbb{C} and ϱ a positive number. Then the rings E(K) and $\overline{E}(\varrho, K)$ have global dimension ≥ 3 . Moreover, for any t, $3 \leq t \leq \infty$, the statement "gl.dim E(K) = t" (resp. "gl.dim $\overline{E}(\varrho, K) = t$ ") is consistent with ZFC + MA.

Remark. It is an open question whether the statement "gl.dimE(K) = 3" resp. "gl.dim $\overline{E}(\rho, K) = 3$ " is consistent with ZFC + \overline{CH} , where \overline{CH} denotes the negation of the continuum hypothesis.

Theorem 3.2. Let R = E(K) or $\overline{E}(\varrho, K)$ as above. Then K-dim $R \ge 2^{\aleph_1}$. Moreover, MA implies K-dim $R = 2^{2^{\aleph_0}}$. If $\mathfrak{p}_{\subsetneq} \mathfrak{q}_{\subsetneq} \mathfrak{r}$ are prime ideals of R, then there exists a chain of 2^{\aleph_1} prime ideals between \mathfrak{p} and \mathfrak{r} .

Proof. Let *I* be a countably infinite set of zeros of a function in *R* and let \mathscr{F} be a non-principal ultrafilter on i. Then $\mathfrak{m} = \{f \in R \mid Z(f) \cap I \in \mathscr{F}\}\$ is a maximal ideal of *R* and the localization $R_{\mathfrak{m}}$ is a valuation ring with $\hat{\mathbb{Z}}$ as value group. The statements of the theorem are now just formal consequences of the results in the beginning of this section since there is a (1-1) correspondence between the prime ideals contained in \mathfrak{m} and the convex subgroups of $\hat{\mathbb{Z}}$, and any non-principal maximal ideal of *R* can be obtained as above.

Remark. The exact value (cardinality) of the Krull dimension of the above rings is probably undecidable in ZFC.

Theorem 3.3. Let $R = E_r$ be the ring of all entire functions of order < r. Then gl.dim $E_r \ge 3$, and the statement "gl.dim $R = \infty$ " is consistent with ZFC + MA. Moreover, K-dim $R \ge 2^{\kappa_1}$ and MA implies K-dim $R = 2^{2^{\kappa_0}}$.

Proof. Let $I = \{2^n \mid n \in \mathbb{N}\}$. If $a_n, n \in \mathbb{N}$, is a sequence of natural numbers for which a_n/n is bounded there exists a function $f \in R$, for instance

$$f=\prod_{n\in\mathbb{N}}(1-x/2^n)^a n,$$

for which Z(f) = I and a_n is the multiplicity of 2^n as a zero of f.

For a non-principal ultrafilter \mathscr{F} on I the functions g in R for which $Z(g) \cap I \in \mathscr{F}$ form a prime ideal \mathfrak{p} of R.

For $h \in R$ and $n \in \mathbb{N}$ let $v_n(h)$ be the multiplicity of 2^n as a zero of h and $\hat{v}(h)$ the element of $\hat{\mathbb{Z}}$ determined by the sequence $v_n(h)$, $n \in \mathbb{N}$. Here \hat{v} defines a valuation of the quotient field Q_r of $E_r = R$ with values in $\hat{\mathbb{Z}}$. Since any element in Q_r - by virtue of Hadamard's factorization theorem – can be written as a quotient of two functions in R with disjoint zero sets, it follows that the valuation ring \hat{V} corresponding to \hat{v} is the localization R_p .

For $t \in \mathbb{N}$ let t^* be the element in $\hat{\mathbb{Z}}$ defined by the constant sequence $\{t\}$. Just as in [7] the ideal in $\hat{\mathcal{V}}$ consisting of all $s \in \hat{\mathcal{V}}$ such that $\hat{\upsilon}(s) > t^*$ for all $t \in \mathbb{N}$ is not countably generated. Hence as in [7] we get

gl.dim $R \ge$ gl.dim $R_v =$ gl.dim $\hat{V} \ge 3$.

If we assume MA there exists an ultrafilter \mathscr{F}' on I such that \mathbb{Z}/\mathscr{F}' is s^{κ_0} -saturated [2]. The statement $2^{\kappa_0} = \aleph_{\omega+1}$ is consistent with ZFC + MA (cf. [6]). Consequently, it follows as in [7] that the statement "gl.dim $\hat{V}' = \infty$ " – and thus the statement "gl.dim $R = \infty$ " – is consistent with ZFC + MA, where \hat{V}' denotes the valuation ring constructed as above from the ultrafilter \mathscr{F}' .

Let w be the element in $\hat{\mathbb{Z}}$ defined by the sequence $\{n\}, n \in \mathbb{N}$. The principal convex subgroup $\langle w \rangle$ of $\hat{\mathbb{Z}}$ is in the value group of \hat{v} . Now the remaining assertions of Theorem 3.3 follow – just as in Theorem 3.2 – from the results in the beginning of this section.

Finally, we consider infinitely often differentiable functions f from \mathbb{R} to \mathbb{R} . For $\alpha \in \mathbb{R}$ we define $v_{\alpha}(f) = n$, $n \ge 0$, if $f(\alpha) = \ldots = f^{(n-1)}(\alpha) = 0$, $f^{(n)}(\alpha) \neq 0$ and $v_{\alpha}(f) = \infty$, if $f^{(i)}(\alpha) = 0$ for all $i \ge 0$.

If \mathscr{F} is a non-principal ultrafilter on \mathbb{N} we define $\hat{v}(f)$ as the element in $\mathbb{Z}^{\mathbb{N}}/\mathscr{F} \cup \{\infty\}$ determined by the sequence $\{v_n(f)\}, n \in \mathbb{N}$.

For any ring R, $E(\mathbb{Q}) \subseteq R \subseteq C^{\infty}(\mathbb{R})$, where $C^{\infty}(\mathbb{R})$ denotes the ring of all infinitely often differentiable functions from \mathbb{R} to \mathbb{R} we obtain by \hat{v} a valuation (for rings with zero-divisors) of R with values in $\mathbb{Z}^{\mathbb{N}/\mathcal{F}} \cup \{\infty\}$ and by arguments similar to the previous we get

Theorem 3.4. Let R be any ring for which $E(\mathbb{Q}) \subseteq R \subseteq C^{\infty}(\mathbb{R})$. Then R contains a chain of prime ideals of length 2^{\aleph_1} . Moreover, MA implies that K-dim $R = 2^{2^{\aleph_0}}$ and there is a chain of prime ideals of length $2^{2^{\aleph_0}}$.

References

- [1] H. Bass, Algebraic K-Theory (Benjamin, New York, 1968).
- [2] E. Ellentuck and R.V.B. Bucker, Martin's axiom and saturated models, Proc. Amer. Math. Soc. 34 (1972) 243-249.
- [3] L. Gillman and M. Jerison, Rings of Continuous Functions (Van Nostrand, Princeton, 1960).
- [4] O. Helmer, Divisibility properties of integral functions, Duke Math. J. 6 (1940) 345-356.
- [5] M. Henriksen, On the prime ideals of the rings of entire functions, Pacific J. Math. 3 (1953) 711-720.
- [6] T. Jech, Set Theory (Academic Press, New York, 1978).
- [7] C.U. Jensen, La dimension globale de l'anneau des fonctions entières, C.R. Acad. Sci. Paris 294 (1982) 385-386.
- [8] C.U. Jensen, Théorie des modèles pour des anneaux de fonctions entières et des corps de fonctions méromorphes, to appear in Mém. Soc. Math. de France.
- [9] L.A. Rubel, Solution of problem 6117, Amer. Math. Monthly 85 (1978) 505-506.
- [10] O.F.G. Schilling, Ideal theory on open Riemann surfaces, Bull. Amer. Math. Soc. 52 (1946) 945-963.
- [11] E.C. Titchmarsh, The Theory of Functions (Oxford Univ. Press, Oxford, 1939).
- [12] I.N. Vaserstein, Stable ranges of rings and dimensions of topological spaces, Funk. Anal. Pril. 5
 (2) (1971) 17-27.
- [13] J.H.M. Wedderburn, On matrices whose coefficients are functions of a single variable, Trans. Amer. Math. Soc. 16 (1915) 328-332.
- [14] O. Zariski and P. Samuel, Commutative Algebra II (Van Nostrand, Princeton, 1960).