SOME CURIOSITIES OF RINGS OF ANALYTIC FUNCTIONS

C.U. JENSEN
Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
Communicated by C. Löfwall
Received 8 March 1985
Dedicated to Jan-F.rik Roos on his 50-th birthday

1. It is the purpose of this paper to exhibit some properties of certain rings of analytic functions which may be a little unexpected.

Let E be the ring of all entire functions in one complex variable, i.e. the subring of $\mathbb{C}[[X]]$ consisting of all formal power series with infinite convergence radius. More generally, for a subfield K of \mathbb{C} let $E(K)$ be the subring of $K[[X]]$ formed by all power series with infinite convergence radius. If ϱ is a positive real number, let $E(\varrho, K)$, resp. $\bar{E}(\varrho, K)$ be the subring of $K[[X]]$ consisting of all power series with convergence radius $>\varrho$, resp. $\geq \varrho$.

It is well known that $E(K)$ is a non-Noetherian domain and that $E(K)$ is a Bezout domain, i.e. any finitely generated ideal is principal. If $K=\mathbb{C}$ this was proved by Wedderburn [13] and in the general case by Helmer [4], (who apparently was unaware of [13]). As for the Krull dimension of E the first 'result' appeared in [10] stating that K-dim $E=1$. An error in the proof was noticed by Kaplansky [5] and $K-\operatorname{dim} E$ is actually infinite. We shall give more precise results concerning the length of chains of prime ideals of E.

As shown in [7] the global dimension of E is ≥ 3, while the exact value of gl.dim E cannot be determined from the usual axioms of set theory (ZFC): For any t, $3 \leq t \leq \infty$, the statement gl.dim $E=t$ is consistent with ZFC, in fact, even consistent with ZFC + MA, (MA denoting Martin's axiom).

The corresponding results hold true if E is replaced by $E(K)$ or $\bar{E}(\varrho, K)$. The proofs only require minor modifications. For $E(\varrho, K)$, however, the situation is completely different. For any positive ϱ and any field $K \subseteq \mathbb{C}$ the ring $E(\varrho, K)$ is Euclidean, in particular a PID. Since for instance $\bar{E}(1, \mathbb{C})=\bigcap_{n=1}^{\infty} E(1-1 / n, \mathbb{C})$ we obtain a decreasing sequence of PID's whose intersection is a Bezout domain of undecidable global dimension and of uncountable Krull dimension.

The stable range (in the sense of Bass [1]) of the above rings depends on K. If $K \subseteq \mathbb{R}$ the stable range of each of the rings $E(\varrho, K), \bar{E}(\varrho, K)$ and $E(K)$ is 2 , otherwise, when $K \Phi \mathbb{R}$ the stable range is 1 .

Finally, we consider the rings E_{r} of entire functions of order $<r$, where $0<r<\infty$, cf. [11]. We recall that a function $f \in E$ belongs to E_{r} if there exist real numbers c and $a, a<r$, such that $|f(x)| \leq c \exp \left(|x|^{a}\right)$ for all $x \in \mathbb{C}$. From an analytic point of view the functions of finite order are, after the polynomials, the simplest entire functions [11]. However, the ring-theoretic structure of E_{r} is much more complicated than that of E. Just as E the rings E_{r} are non-Noetherian, but unlike E none of the rings E_{r} is a Bezout domain. The stable range of E_{r} is >1, but the precise value is unknown.

From hadamard's factorization theorem [11] it follows that each E_{r} is completely integrally closed in its quotient field. Concerning the global dimension of E_{r} we are only able to show that gl. $\operatorname{dim} E_{r} \geq 3$ and that the statement gl.dim $E_{r}=\infty$ is consistent with ZFC + MA. The Krull dimension of E_{r} is uncountable and behaves to a large extent like that of E.

The above methods also allow us to determine the Krull dimension of the ring of all infinitely often differentiable real functions and a class of subrings hereof.
2. In this section we prove those results mentioned in Section 1 which do not invoke logic or set theory.

Theorem 2.1. For any subfield K of \mathbb{C} any $\varrho>0$ the ring $R=E(\varrho, K)$ is Euclidean; in particular, R is a PID.

Proof. For $f \in R \backslash 0$ let $N(f)$ be the number of zeros (counted with multiplicities) in the closed disc $|z| \leq \varrho$. Obviously $N(f g)=N(f)+N(g)$ for all $f, g \in R \backslash 0$ and $N(f)=0$ if and only if f is a unit in R. We shall show that for any two elements $f, g \in R, g \neq 0$ there exist elements q and $r \in R$ such that

$$
f=g q+r \quad \text { where } r=0 \text { or } N(r)<N(g) .
$$

Here, we may, of course, assume that $g l f$.
The functions f and g can be written in the form

$$
f=\bar{f} u, \quad g=\bar{g} v,
$$

where
(1) \bar{f} (resp. \bar{g}) is a polynomial in $\mathbb{C}[X]$ whose roots are exactly the zeros of f (resp. g) in the disc $|z| \leq \varrho$, counted with multiplicities, and \bar{f} (resp. \bar{g}) has real coefficients when $K \subseteq \mathbb{R}$.
(2) u (resp. v) is a unit in $E(\varrho, \mathbb{C})$ and u (resp. v) belongs to $E(\varrho, \mathbb{R}$) when $K \subseteq \mathbb{R}$.

By the usual algorithm for polynomials there exist elements \bar{q} and $\bar{r} \in \mathbb{C}[X]$ such that $\bar{f}=\bar{g} \bar{q}+\bar{r}$ and \bar{r} has degree smaller than $N(g)=$ degree of \bar{g}. If $K \cong \mathbb{R}$ the polynomials \bar{q} and \bar{r} have real coefficients. Hence

$$
f=g\left(v^{-1} u \bar{q}\right)+u \bar{r}
$$

where the number of zeros of $u \bar{r}$ is smaller than $N(g)$. Here $u \bar{r}$ and $v^{-1} u \bar{q}$ may not have coefficients in K, but if $K \subseteq \mathbb{R}$ they belong to \mathbb{R}.

If $g=b_{n} x^{n}+b_{n+1} x^{n+1}+\ldots, b_{n} \neq 0$, then $u \bar{r}=\sum_{i=0}^{\infty} a_{i} x^{i}$ where $a_{0}, a_{1}, \ldots, a_{n-1} \in K$.
For any $h \in E(\varrho, \mathbb{C})$, resp. $h \in E(\varrho, \mathbb{R})$ when $K \subseteq \mathbb{R}$, we can write

$$
f=g\left(v^{-1} u \bar{q}-h\right)+(h g+u \bar{r}) .
$$

Since K is dense in \mathbb{R} when $K \cong \mathbb{R}$ and K is dense in \mathbb{C} when $K \varsubsetneqq \mathbb{R}$, we can define successively the coefficients in

$$
h=h_{0}+h_{1} x+h_{2} x^{2}+\ldots
$$

such that

$$
h g+u \bar{r}=\left(h_{0}+h_{1} x+h_{2} x^{2}+\ldots\right)\left(b_{n} x^{n}+b_{n+1} x^{n+1}+\ldots\right)+\sum_{i=0}^{\infty} a_{i} x^{i}
$$

have coefficients in K, the convergence radius of h is $>\varrho$, and (by continuity arguments) $h g+u \bar{r}$ has at most $N(\bar{r})=N(u \bar{r})$ zeros in the disc $|z| \leq \varrho$. Hence

$$
\begin{aligned}
& f=g q+r \\
& q=v^{-1} u \bar{q}-h, \\
& r=h g+u \bar{r}
\end{aligned}
$$

yields the desired decomposition of f.
Theorem 2.2. Let K be a subfield of \mathbb{C} and ϱ a positive number. If $K \subseteq \mathbb{R}$ each of the rings $E(K), \bar{E}(\varrho, K)$ and $E(\varrho, K)$ has stable range 2. If $K \Phi \mathbb{R}$ each of the above rings has stable range 1.

Proof. The proof of Proposition 1.1 of [8], (cf. the addendum of that paper) also works for the rings $\bar{E}(\varrho, K)$ and $E(\varrho, K), K \nsubseteq \mathbb{R}$, so that the rings $E(K), E(\varrho, K)$ and $E(\varrho, K)$ have stable range 1 when $K \nsubseteq \mathbb{R}$. (For $E(\mathbb{C})$ cf. also [9].)

Next we consider the case where $K \subseteq \mathbb{R}$. Let R denote one of the rings $E(K)$, $\tilde{E}(\varrho, K)$ or $E(\varrho, K)$. For $f \in R$ let $Z(f)$ be the set of zeros α of f where we require $|\alpha| \leq \varrho$ if $R=E(\varrho, K)$ and $|\alpha|<\varrho$ if $R=\bar{E}(\varrho, K)$.

We first prove that the stable range of R is ≤ 2. For any three functions f, g and $h \in R$ such that $R f+R g+R h=R$ we have to find elements $\lambda, \mu \in R$ for which $R(f+\lambda h)+R(g+\mu h)=R$, cf. [12]. The condition $R f+R g+R h=R$ implies $Z(f) \cap Z(g) \cap Z(h)=\emptyset$. By interpolation we can find $\lambda \in R$ such that $\lambda(\alpha) \neq-f(\alpha) / h(\alpha)$ for all $\alpha \in Z(g), \alpha \notin Z(h)$. Hence $Z(f+\lambda h) \cap Z(g)=\emptyset$ and thus $R(f+\lambda h)+R g=R$.

To show that the stable range of R is $\neq 1$ we consider the functions $f=x$ and $g=4 x^{2}-\varrho^{2}$, where ϱ may be any positive number in the case $R=E(K)$. Obviously, $R f+R g=R$ while $R(f+\lambda g) \neq R$ for every $\lambda \in R$, since $f+\lambda g$ is a real-valued continuous function and $(f+\lambda g)(\varrho / 2)>0$ and $(f+\lambda g)(-\varrho / 2)<0$.

Remark 1. That the stable range of $E(\varrho, K)$ is ≤ 2 could also be seen from Theorem 2.1 since any PID has stable range ≤ 2.

Remark 2. From Theorems 2.1 and 2.2 it follows that any matrix in $\operatorname{SL}(n, E(\varrho, K))$ is a product of elementary matrices. If $K \varsubsetneqq \mathbb{R}$, any matrix in $\operatorname{SL}(n, E(\varrho, K))$ is a product of at most $2 n(n-1)$ elementary matrices. (The bound is probably not best possible.) The corresponding result is not true if $K \subseteq \mathbb{R}$. For instance, for $n=2$ there is no number f such that any matrix in $\operatorname{SL}(2, E(\varrho, K))$ is a product of at most f elementary matrices. In fact, no such bound exists for the matrices

$$
\left(\begin{array}{cc}
\cos (t x) & -\sin (t x) \\
\sin (t x) & \cos (t x)
\end{array}\right), \quad t \in \mathbb{N}
$$

3. In this section we deal with the remaining assertions in Section 1. For the proofs we need some general results about ultrapowers of \mathbb{Z} over a countable index set I. Let \mathscr{y} be a non-principal ultratilter on I and $\mathbb{Z}=\mathbb{Z}^{I} / \mathscr{F}$ the corresponding ultrapower of $\mathbb{Z} . \mathbb{Z}$ has a natural structure as a totally ordered group. Let \mathscr{B} be the family of convex subgroups ('isolated subgroups' in the terminology of [14]). By settheoretical inclusion \mathscr{F} is a totally ordered Dedekind complete set. Further, let \mathscr{F} the family of 'principal' convex subgroups of \mathbb{Z}. If $a>0$, the principal convex subgroup generated by a is

$$
\langle a\rangle=\{x \in \hat{\mathbb{Z}} \mid-n a<x<n a \text { for some } n \in \mathbb{N}\} .
$$

\mathscr{P} is totally ordered by set-theoretical inclusion and forms as such an η_{1}-set. This means that for any two countable families $\{\langle a\rangle\}$ and $\{\langle b\rangle\}$ of \mathscr{P} such that any $\langle a\rangle \nsubseteq$ any $\langle b\rangle$ there exists a y for which

$$
\begin{equation*}
\langle a\rangle \subsetneq\langle y\rangle \subsetneq\langle b\rangle \tag{*}
\end{equation*}
$$

for all $\langle a\rangle$ and $\langle b\rangle$.
We may assume that all a and b are positive and (*) can be written

$$
\left.\begin{array}{l}
n a<y \\
m y<b
\end{array}\right\} \text { for all } a \text { and } b \text { and all } n, m \in \mathbb{N} .
$$

Since any finite subsystem of the above family of inequalities is solvable in $\hat{\mathbb{Z}}$ and $\hat{\mathbb{Z}}$ is \aleph_{1}-saturated, the above countable system of inequalities has a solution $y \in \mathbb{Z}$. Consequently \mathscr{P} is an η_{1}-set. If we assume MA, there exists a non-principal ultrafilter \mathscr{F} on I such that $\hat{\mathbb{Z}}=\mathbb{Z}^{I} / \mathscr{F}$ is $2^{X_{0}}$-saturated [2]. The above construction shows that in this case α is an η_{α}-set, where $2^{\mathrm{K}_{0}}=\mathcal{N}_{\alpha}$, (α being an ordinal).

By [3] it follows that \mathscr{C} has at least $2^{\mathbb{K}_{1}}$ elements. If we assume MA and $2^{\AA_{0}}=\mathcal{X}_{\alpha}$, then $2^{\mathrm{K}_{0}}$ is regular [6], and the proof in [3, pp. 185-188] shows that \mathscr{C} has cardinality $2^{2^{x_{0}}}$.

Moreover, if we have convex subgroups of $\hat{\mathbb{Z}}$

$$
\mathfrak{a} \subsetneq \mathfrak{b} \varsubsetneqq \mathfrak{c},
$$

then there exist elements b and $c \in \mathbb{Z}$ such that

$$
\mathfrak{a} \subsetneq\langle b\rangle \varsubsetneqq \mathfrak{b} \subsetneq\langle c\rangle \varsubsetneqq \mathfrak{c}
$$

and the fact that \mathscr{P} is an η_{1}-set (resp. η_{α}-set if we assume MA and choose \mathscr{F} suitably) implies that there are $\geq 2^{\mathrm{K}_{1}}$ (resp. $2^{2^{\mathrm{K}_{0}}}$) convex subgroups between a and c.

After these preliminary remarks we return to the results in Section 1. It presents no difficulties to modify the proof in [7] to obtain

Theorem 3.1. Let K be a subfield of \mathbb{C} and ϱ a positive number. Then the rings $E(K)$ and $\bar{E}(\varrho, K)$ have global dimension ≥ 3. Moreover, for any $t, 3 \leq t \leq \infty$, the statement "gl.dim $E(K)=t$ " (resp. "gl.dim $\bar{E}(\varrho, K)=t$ '') is consistent with $\mathrm{ZFC}+\mathrm{MA}$.

Remark. It is an open question whether the statement " $\operatorname{gl} \cdot \operatorname{dim} E(K)=3$ " resp. "gl.dim $\bar{E}(\varrho, K)=3$ " is consistent with $\mathrm{ZFC}+\overline{\mathrm{CH}}$, where $\overline{\mathrm{CH}}$ denotes the negation of the continuum hypothesis.

Theorem 3.2. Let $R=E(K)$ or $\bar{E}(\varrho, K)$ as above. Then $K-\operatorname{dim} R \geq 2^{{ }^{{ }_{1}}}$. Moreover, MA implies $\mathrm{K}-\operatorname{dim} R=2^{2^{\mathrm{K}_{0}}}$. If $\mathfrak{p} \subsetneq \mathfrak{q} \subsetneq \mathfrak{r}$ are prime ideals of R, then there exists a chain of $2^{{ }^{{ }_{1}}}$ prime ideals between p and r .

Proof. Let I be a countably infinite set of zeros of a function in R and let \mathscr{F} be a non-principal ultrafilter on i . Then $\mathfrak{m}=\{f \in R \mid Z(f) \cap I \in \mathscr{F}\}$ is a maximal ideal of R and the Iocalization R_{m} is a valuation ring with $\hat{\mathbb{Z}}$ as value group. The statements of the theorem are now just formal consequences of the results in the beginning of this section since there is a $(1-1)$ correspondence between the prime ideals contained in \mathfrak{m} and the convex subgroups of $\hat{\mathbb{Z}}$, and any non-principal maximal ideal of R can be obtained as above.

Remark. The exact value (cardinality) of the Krull dimension of the above rings is probably undecidable in ZFC.

Theorem 3.3. Let $R=E_{r}$ be the ring of all entire functions of order $<r$. Then gl. $\operatorname{dim} E_{r} \geq 3$, and the statement " $g l . \operatorname{dim} R=\infty$ " is consistent with $\mathrm{ZFC}+\mathrm{MA}$. Moreover, $\mathrm{K}-\operatorname{dim} R \geq 2^{\mathrm{K}_{1}}$ and MA implies $\mathrm{K}-\operatorname{dim} R=2^{2^{\mathrm{K}_{0}}}$.

Proof. Let $I=\left\{2^{n} \mid n \in \mathbb{N}\right\}$. If $a_{n}, n \in \mathbb{N}$, is a sequence of natural numbers for which a_{n} / n is bounded there exists a function $f \in R$, for instance

$$
f=\prod_{n \in \mathbb{N}}\left(1-x / 2^{n}\right)^{a} n
$$

for which $Z(f)=I$ and a_{n} is the multiplicity of 2^{n} as a zero of f.

For a non-principal ultrafilter \mathscr{F} on I the functions g in R for which $Z(g) \cap I \in \mathscr{F}$ form a prime ideal \mathfrak{p} of R.

For $h \in R$ and $n \in \mathbb{N}$ let $v_{n}(h)$ be the multiplicity of 2^{n} as a zero of h and $\hat{v}(h)$ the element of \mathbb{Z} determined by the sequence $v_{n}(h), n \in \mathbb{N}$. Here $\hat{0}$ defines a valuation of the quotient field Q_{r} of $E_{r}=R$ with values in $\not{\mathbb{Z}}$. Since any element in Q_{r} - by virtue of Hadamard's factorization theorem - can be written as a quotient of two functions in R with disjoint zero sets, it follows that the valuation ring \hat{V} corresponding to \hat{v} is the localization R_{p}.

For $t \in \mathbb{N}$ let t^{*} be the element in \mathbb{Z} defined by the constant sequence $\{t\}$. Just as in [7] the ideal in \hat{V} consisting of all $s \in \hat{V}$ such that $\hat{v}(s)>t *$ for all $t \in \mathbb{N}$ is not countably generated. Hence as in [7] we get

$$
\text { gl. } \operatorname{dim} R \geq \text { gl.dim } R_{\mathrm{p}}=\text { gl.dim } \hat{V} \geq 3
$$

If we assume MA there exists an ultrafilter \mathscr{F}^{\prime} on I such that $\mathbb{Z} / \mathscr{F}^{\prime}$ is
 Consequently, it follows as in [7] that the statement 'gl.dim $\hat{V}^{\prime}=\infty$ ' - and thus the statement " $g l . \operatorname{dim} R=\infty$ " - is consistent with ZFC + MA, where \hat{V} ' denotes the valuation ring constructed as above from the ultrafilter \mathscr{F}^{\prime}.

Let w be the element in $\hat{\mathbb{Z}}$ defined by the sequence $\{n\}, n \in \mathbb{N}$. The principal convex subgroup $\langle w\rangle$ of $\hat{\mathbb{Z}}$ is in the value group of \hat{v}. Now the remaining assertions of Theorem 3.3 follow - just as in Theorem 3.2 - from the results in the beginning of this section.

Finally, we consider infinitely often differentiable functions f from \mathbb{R} to \mathbb{R}. For $\alpha \in \mathbb{R}$ we define $v_{\alpha}(f)=n, \quad n \geq 0$, if $f(\alpha)=\ldots=f^{(n-1)}(\alpha)=0, f^{(n)}(\alpha) \neq 0$ and $v_{\alpha}(f)=\infty$, if $f^{(i)}(\alpha)=0$ for all $i \geq 0$.

If \mathscr{F} is a non-principal ultrafilter on \mathbb{N} we define $\hat{v}(f)$ as the element in $\mathbb{Z}^{\mathbb{N}} / \mathscr{F} \cup\{\infty\}$ determined by the sequence $\left\{v_{n}(f)\right\}, n \in \mathbb{N}$.

For any ring $R, E(\mathbb{Q}) \subseteq R \subseteq C^{\infty}(\mathbb{R})$, where $C^{\infty}(\mathbb{R})$ denotes the ring of all infinitely often differentiable functions from \mathbb{R} to \mathbb{R} we obtain by \hat{v} a valuation (for rings with zero-divisors) of R with values in $\mathbb{Z}^{N} / \mathscr{F} \cup\{\infty\}$ and by arguments similar to the previous we get

Theorem 3.4. Let R be any ring for which $E(\mathbb{Q}) \subseteq R \subseteq C^{\infty}(\mathbb{R})$. Then R contains a chain of prime ideals of length $2^{\mathbb{N}_{1}}$. Moreover, MA implies that $\mathrm{K}-\operatorname{dim} R=2^{2^{\boldsymbol{N}_{0}}}$ and there is a chain of prime ideals of length $2^{2^{x_{0}}}$.

References

[1] H. Bass, Algebraic K-Theory (Benjamin, New York, 1968).
[2] E. Ellentuck and R.V.B. Bucker, Martin's axiom and saturated models, Proc. Amer. Math. Soc. 34 (1972) 243-249.
[3] L. Gillman and M. Jerison, Rings of Continuous Functions (Van Nostrand, Princeton, 1960).
[4] O. Helmer, Divisibility properties of integral functions, Duke Math. J. 6 (1940) 345-356.
[5] M. Henriksen, On the prime ideals of the rings of entire functions, Pacific J. Math. 3 (1953) 711-720.
[6] T. Jech, Set Theory (Academic Press, New York, 1978).
[7] C.U. Jensen, La dimension globale de l'anneau des fonctions entières, C.R. Acad. Sci. Paris 294 (1982) 385-386.
[8] C.U. Jensen, Théorie des modèles pour des anneaux de fonctions entières et des corps de fonctions méromorphes, to appear in Mém. Soc. Math. de France.
[9] L.A. Rubel, Solution of problem 6117, Amer. Math. Monthly 85 (1978) 505-506.
[10] O.F.G. Schilling, Ideal theory on open Riemann surfaces, Bull. Amer. Math. Soc. 52 (1946) 945-963.
[11] E.C. Titchmarsh, The Theory of Functions (Oxford Univ. Press, Oxford, 1939).
[12] I.N. Vaserstein, Stable ranges of rings and dimensions of topological spaces, Funk. Anal. Pril. 5 (2) (1971) 17-27.
[13] J.H.M. Wedderburn, On matrices whose coefficients are functions of a single variable, Trans. Amer. Math. Soc. 16 (1915) 328-332.
[14] O. Zariski and P. Samuel, Commutative Algebra II (Van Nostrand, Princeton, 1960).

